

A COLLECTIVE-COMPUTATION APPROACH TO PROGNOSTICS HEALTH MANAGEMENT

Pls: Huan Liu, Aditi Chattopadhyay Antonia Papandreou-Suppappola

Graduate Students: G. Varadarajan

Y. Liu, J. Zhang

Research supported by NASA IVHM Program Grant NNX08AY51A, Technical Monitor: Edward Balaban

NASA Aviation Safety Technical Conference Denver, Colorado October 21-23, 2008

MOTIVATION

- Prognosis metrics that emphasize statistical & mathematical rigor and validation strategies
- Selection of data sources with relevant features
- Robust damage prediction methodologies integrating physics-based and data-driven models
- Validation of new prognosis metrics on focus problem

STATE-OF-THE-ART

PROJECT OBJECTIVES

Examine evaluation metrics & develop a novel prognostic framework using collective-computation approaches combined with data-driven models and physics-based models.

RESEARCH TASKS

Task 1: Evaluation of existing prognostic metrics

- effectiveness to represent uncertainties from noise, imperfect models, future anticipated loads & environmental conditions
- mathematical stochastic-based metric for dynamic system; provides bound on minimum possible variance of estimated damage state

Task 2: Intelligent data selection & reduction

 smart use of massive, heterogeneous data from multiple sources; employ appropriate data sources with relevant features

source selection & feature selection

- complementary feature selection: remove redundant & irrelevant features
- compressive sensing: recover complete data from randomly sampled data & reduce dimensionality & complexity.

RESEARCH TASKS (CONTD.)

Task 3:

Experimentation, Validation & **Application**

Generate data for hybrid prognosis procedure

Experiments with complex composite sections

system

Validate new prognosis metrics and frameworks

Refine novel algorithms by high performance computing

IVHM Milestones Supported

Milestone 3.3.2 Guidelines for fidelity of prognostic estimates
Milestone 3.3.3 Methodology for assessing the performance of
prognostic algorithms and methods
Milestone 3.3.5 Assessment of the ability to perform prognostic
reasoning

DETAILED ARCHITECTURE

COMPLEMENTARY FEATURE SELECTION ASJ

- 2^N search space for *N features; exponential growth in number of* features causes computational & statistical problems (overfitting).
- Proposed framework: complementary feature selection to remove redundant & irrelevant features
 - Extract features using canonical correlation analysis that utilizes pair-wise samples from two information sources
 - Candidate feature selection selects top features from different views; feature relevance is used to rank features in each view
- Canonical feature selection algorithm: filter algorithm that uses backward elimination to remove irrelevant & redundant features by removing withinset redundant features; within-set irrelevant features; & cross-set redundant features

IVHM and Prognosis

COMPLEMENTARY FEATURE SELECTION

COMPRESSIVE SENSING

- High sampling frequencies yield many data samples that require high computational processing cost, & increased transfer & storage space
- Many natural signals, x(t), have sparse representations: when expanded in terms of basis functions, x=A s, (e.g. wavelet, matching pursuit decomposition), most coefficients, s, are zero
- Find stable measurement matrix B (random) such that y=Bx & a reconstruction algorithm to obtain x from only M samples of measurement y.

Matrix B is a random matrix

Feature Extraction with Reduced Data Sets

 Compressed sensing with matching pursuit decomposition (MPD) used to extract important features for prognosis using a reduced data set; preliminary results with milling machine wear data from NASA Ames. : 7.3% error

A. Agogino and K. Goebel (2007). Mill Data, BEST lab, UC Berkeley. NASA Ames Prognostics Data Repository

MPD time-frequency plots

Conventional sampling 9,000 samples

Random sampling 1,800 samples

Random sampling 900 samples

ROBUST HYBRID PROGNOSIS

Need for physics-based models:

- Manifestations of microscale defects in macroscale phenomena observed experimentally but not adequately explained/modeled
- Fundamental understanding of physical phenomena unique to multiple & coupled damage modes, dynamic response due to complex stress wave patterns, nonlinear energy absorption during impact loading – critical issues associated with heterogeneous material systems
- Virtual sensing to detect very small crack and precursor to damage
- Configuration independent damage interrogation
- Off-line damage prognosis

Need computationally efficient multiscale models that can bridge the relevant length scales

HYBRID PROGNOSIS ARCHITECTURE

PHYSICS-BASED MULTISCALE MODEL ASSETS AND ADDRESS OF THE PHYSICS O

IVHM and Prognosis

COMPOSITE BEAM FATIGUE TEST

Preliminary results: progressive damage of simple composite structure.

Key Issues:

- Active sensing with PZT wafers
- Cyclic loading for progressive damage
- Signal processing & feature extraction with wavelet analysis
- > Prognosis with Gaussian process estimation

Progressive damage displayed by Echo Therm

Final failure modes of composite specimens

Experimental setup

GAUSSIAN PROCESS ESTIMATION

Techniques:

- ➤ "Damage index" indicates wave energy of decomposed sensing signals
- Four specimens were tested; five to ten states were recorded in each test; More tests are necessary (and underway) to improve results

NASA BEARING DATA SETS

Preliminary Results

Key Issues:

- ➤ Natural defect propagation of machinery system
- Long-term progressive damage
- ➤ Signal de-noising & extraction of weak signature
- Performance assessment & complementary feature selection
- > Prognosis at various defect stages

Note: Figure and data sets from: Qiu et al. "Wavelet Filter-based Weak Signature Detection Method and its Application on Roller Bearing Prognostics", Journal of Sound & Vibration, Vol. 289, 2006, pp 1066-1090.

Data sets Link:

http://ti.arc.nasa.gov/projects/data_prognostics/

Bearing test setup & sensor placement illustration

Bearing 3

Bearing 2

Bearing 4

GAUSSIAN PROCESS PREDICTION

- Gaussian process for online state estimation
- Based on wavelet features
- ➤ Good match between predicted state & experimental state during final phase of working life.
- Need better robust feature extraction algorithm

MPD FEATURES STATISTICS

Preliminary results:

- ➤ Feature selection: modeling an unknown function of a number of variables
- Combined time-frequency-domain feature analysis

- Redundant feature compression
- Comparisons of features between related sensors
- > Feature trend for prognosis

FUTURE WORK

- Multi-sensing composite fatigue and and bi-axial loading test (data for prognosis)
- Evaluate prognosis methodologies, such as Gaussian process, support vector regression, regression vector machine, particle filter, anomaly detection
- •Evaluate current prognostic metrics & develop standardized novel metrics
- •Compressive sensing algorithm & data compression
- •Feature extraction, evaluation & complementary feature selection method
- Novel hybrid prognostic framework

